Ein Forschungsteam der Universität Jena und ihres Exzellenzclusters „Balance of the Microverse“ hat nun das komplexe Wechselspiel von Angriffs- und Verteidigungsstrategien bei der Infektion von Cholera-Bakterien (Vibrio cholerae) durch Bakteriophagen namens VP882 detailliert untersucht und herausgefunden, dass dabei kleine RNA-Moleküle eine entscheidende Rolle spielen.
Vom harmlosen Mitbewohner zum radikalen Kidnapper
Sind Bakterien mit Phagen infiziert, können sich diese auf zwei unterschiedlichen Wegen vermehren: entweder als blinde Passagiere getarnt im Bakterien-Erbgut oder als radikale Kidnapper, die sich in den Bakterienzellen ohne Rücksicht auf Verluste in großer Zahl kopieren und die Zellen schließlich einfach zerstören. Welchen Weg die Phagen wählen, hängt davon ab, ob es in der unmittelbaren Umgebung ausreichend weitere Wirtszellen gibt, in denen sie Unterschlupf finden.
Doch wie finden die Phagen das heraus? „Sie machen sich einen chemischen Zählmechanismus zunutze, mit dem die Bakterien ihre Artgenossen erkennen“, erklärt Prof. Dr. Kai Papenfort von der Uni Jena, der die Untersuchung geleitet hat. Das sogenannte „Quorum sensing“ funktioniert über Signalmoleküle, die von den Bakterien produziert und in die Umgebung abgegeben werden. Gleichzeitig nehmen die Bakterien die Konzentration der Moleküle über spezifische Rezeptoren wahr und erhalten so Informationen darüber, wie zahlreich die eigene Population gerade ist. „Der Trick der Phagen ist nun, dass sie diese chemische Kommunikation der Bakterien ,belauschen‘“, sagt Papenfort.
In ihren Experimenten haben die Forschenden untersucht, was mit den Phagen und den Bakterien passiert, sobald diese ihr chemisches „Quorum sensing“-Signal abgeben. „Wir konnten beobachten, dass 99 Prozent der Bakterien innerhalb von 60 Minuten zerstört werden, in dieser Zeit übernehmen die Phagen die Kontrolle“, berichtet Dr. Marcel Sprenger, der Erstautor der vorgelegten Publikation. Das Team fand heraus, dass dieses Umschalten von kleinen RNA-Molekülen gesteuert wird, eine davon ist „VpdS“ („VP882 phage derived sRNA“). „Sobald die Phagen das chemische Signal von den Bakterien erhalten, wird diese RNA sehr stark produziert“, so Sprenger.
Wie Bakterien den Viren Paroli bieten
Um herauszufinden, welche Gene von VpdS in ihrer Aktivität genau reguliert werden, hat das Team einen ganzheitlichen technologischen Ansatz verfolgt und Bakterienkulturen sowohl mit VP882-Phagen infiziert als auch mit genetisch modifizierten Phagen, die kein VpdS herstellen können. Mittels einer als „RNA interaction by ligation und sequencing“ bezeichneten Methode, konnten sie dann die Wechselwirkung sämtlicher RNA-Moleküle in den Bakterienkulturen zu unterschiedlichen Zeitpunkten erfassen. „Damit erhalten wir nicht nur Hinweise darauf, welche Gene gerade aktiv sind, sondern auch wie diese interagieren“, so Papenfort.Da mit dieser Methode sowohl die Gene des Phagen als auch der Wirtsbakterien untersucht wurden, erhielten die Forschenden einen umfassenden Einblick in die Veränderungen, die während des Quorum sensings und danach erfolgen. „Wir konnten zeigen, dass VpdS sowohl eigene Phagen-Gene reguliert als auch Gene vom Wirt, womit sich die Zerstörung der Bakterienzellen gut erklären lässt“, sagt Papenfort.
Aus den gewonnenen Daten konnten die Forschenden aber auch weitere Zusammenhänge ablesen. Etwa, dass es auch Gene der Bakterien gibt, die aktiviert durch das chemische Signal der Vermehrung der Phagen „Paroli bieten“ und so der eigenen Zerstörung entgegenwirken. Letzteres sei besonders interessant, so Papenfort. „Wir sehen hier Vorläufer des Immunsystems höherer Organismen. Die Bakterien haben zahlreiche Gene, die sie gegen Viren schützen.“ Da diese Gene auch in höheren Organismen vorhanden sind, gehen die Forschenden davon aus, dass bei deren Regulation auch RNA-Moleküle eine wichtige Rolle spielen
Den ganzen Artikel finden Sie unter:
https://www.uni-jena.de/240404-kleine-rna
Quelle: Friedrich-Schiller-Universität Jena (04/2024)
Publikation:
Sprenger M. et al. Small RNAs direct attack and defence mechanisms in a quorum sensing phage and its host. Cell. Host & Microbe (2024), https://doi.org/10.1016/j.chom.2024.03.010