Home arrow Meldungen arrow News arrow Auf der Suche nach dem ersten Bakterium
Dienstag, 20. April 2021
 
 
analytik.de
analytik.de - news
Foto des Monats
Bild des Monats
Auf der Suche nach dem ersten Bakterium
ImageWie sah der Ahnherr aller Bakterien aus, wo lebte er und wie ernährte er sich? Auf diese Fragen fand nun ein Forschungsteam am Institut für Molekulare Evolution der Heinrich-Heine-Universität Düsseldorf (HHU) anhand der Analyse biochemischer Stoffwechselnetzwerke und Stammbäume Antworten. Dass sie sogar auf die Form des ersten Bakteriums schließen können, berichten sie in der Zeitschrift Communications Biology.


Vor rund fünf Jahren stellte Institutsleiter Prof. Dr. William (Bill) Martin mit seinem Team den letzten gemeinsamen universellen Vorfahren aller Lebewesen vor und taufte ihn „LUCA“. Er lebte vor ca. 3,8 Milliarden Jahren an heißen Tiefseehydrothermalquellen.

Nun beschreiben die Düsseldorfer Evolutionsbiologinnen und -biologen eine weitere sehr alte Zelle und geben ihr den Namen „LBCA“ („Last Bacterial Common Ancestor“). Sie ist der Vorfahr der heute größten Domäne aller lebenden Organismen: der Bakterien. In Communications Biology berichten sie über ihre neuen Forschungsansätze, die zu dem Erfolg geführt haben, über LBCAs Biochemie und die stammesgeschichtlichen (phylogenetischen) Zusammenhänge.

Bakterien sind fast so alt wie das Leben selbst: LBCA lebte vor rund 3,5 Milliarden in einer ähnlichen Umgebung wie schon LUCA. Um das Erbgut, die Eigenschaften und die Lebensumstände von LBCA zu enträtseln, untersuchte das Forschungsteam das Genom von 1089 bakteriellen Anaerobien – Bakterien, die ohne Sauerstoff leben. „Die Beschränkung auf Anaerobien vereinfachte unsere Arbeit“, so Erstautorin Dr. Joana C. Xavier. „Da Bakterien entstanden, als es auf der Erde keinen freien Sauerstoff gab, mussten wir uns nicht ansehen, wie sich Bakterien heute den Sauerstoff nutzbar machen. Denn diese Mechanismen entwickelten sich evolutionsgeschichtlich erheblich nach den ersten Bakterien.“

Bei höheren Lebewesen wird das Erbgut über den Vererbungsweg (vertikaler Gentransfer) von Eltern- zu Kindergeneration weitergebenen. Daher gibt das Genom auch Aufschluss über die stammesgeschichtliche Entwicklung. Bei Bakterien spielt aber eine andere Form des Erbgutaustausches eine bedeutende Rolle, der sogenannte laterale Gentransfer (LGT). Über ihn können Bakterien – auch über Artgrenzen hinweg – Erbinformationen untereinander austauschen. Dies erschwerte die Rekonstruktion des LBCA-Genoms erheblich, denn mit den traditionellen Methoden der Phylogenetik kann nicht auf die Wurzel des bakteriellen Evolutionsbaums zurückgeschlossen werden.

Die Düsseldorfer Evolutionsforscherinnen und -forscher verwendeten deshalb biochemische Netzwerke zusammen mit Tausenden von einzelnen Stammbäumen. Anhand der 1089 untersuchten Anaerobien-Genome identifizierten sie 146 Proteinfamilien, die in allen Bakterien vorhanden sind. Diese Proteine bilden ein nahezu vollständiges metabolisches Kernnetzwerk.

Um das Genom von LBCA zu vervollständigen, mussten nur neun weitere Gene hinzugenommen werden, damit das metabolische Netzwerk des Urbakteriums alle essentiellen und universellen Stoffwechselprozesse enthält. Einige weitere Gene – die von LUCA stammen – sind zudem noch notwendig, damit der Organismus völlig unabhängig ist und sich fortpflanzen kann.

Nachdem sie das Stoffwechselnetzwerk von LBCA entschlüsselt hatten, suchten die Autoren mit statistischen Verfahren nach heute lebenden Bakteriengruppen, die ihrem Urahnen am ähnlichsten sind. Die dazu verwendete Methode „Minimal Ancestor Deviation“ (kurz MAD) hatte Co-Autor Fernando D. K. Tria entwickelt: „Die modernen Clostridien sind die ähnlichsten Verwandte von LBCA, dicht gefolgt von den Deltaproteobacteria, Actinobacteria und einigen Mitgliedern von Aquifex. Gemeinsam haben diese Gruppen den sogenannten Acetyl-CoA-Weg, mit dem sie Kohlenstoff fixieren.“

Dazu Prof. Martin, Seniorautor der Studie: „Dies ist der einzige Weg zur Kohlenstofffixierung, der sowohl in Archaeen als auch in Bakterien vorkommt und der auf LUCA zurückgeht. Dieses unabhängig gewonnene Ergebnis bestätigt auch unsere jüngsten Erkenntnisse über den Ursprung und die frühe Entwicklung des Lebens in hydrothermalen Schloten.“

„Wir können mit Sicherheit ableiten, dass LBCA eine stäbchenförmige Gestalt hatte“, so Xavier. „Und wenn es Clostridien ähnlich war, war LBCA möglicherweise in der Lage, Sporen zu bilden.“ Diese Hypothese wurde kürzlich von anderen Forschern aufgestellt „und sie ist sehr gut mit unseren Ergebnissen vereinbar", betont Xavier. Mittels Sporen hätten die den frühen Zellen in der unwirtlichen Umgebung der frühen Erde überleben können.

Schließlich untersuchten die Autoren auch, wieweit der laterale Gentransfer schon zu Zeiten von LBCA eine Rolle spielte. Fernando D. K. Tria: „LBCA unterscheidet sich maßgeblich von durchschnittlichen heutigen Bakterien, denn die LBCA-Gene wurden vor allem durch Vererbung – den vertikalen Gentransfer – weitergegeben.“

Felsvorsprung als spiritueller Ort

Die hier gelungenen Funde sind ein Glücksfall, da es nur sehr wenige gut erhaltene und datierbare archäologische Stätten im Inneren Afrikas gibt. „Ein Felsen auf dem so genannten Ga-Mohana-Hügel in der Kalahari ist so eine Stätte. Unsere Analysen von diesem bis heute für die einheimischen Menschen wichtigen Ort zeigen, dass modernes menschliches Verhalten schon früh auch im Landesinneren zu finden war – und um nichts jenem in Meeresnähe nachstand. In der Kalahari-Savanne herrschte zu jener Zeit ein feuchteres Klima mit Perioden vermehrter Niederschläge. Wir gehen daher davon aus, dass frühe moderne Menschen auch andere Regionen des afrikanischen Kontinents besiedelt haben“, sagt die Erstautorin der Studie, Jayne Wilkins von der Griffith University in Australien. Der Felsvorsprung am Ga-Mohana-Hügel wurde bereits vor mehr als 100.000 Jahren und auch heute als spiritueller Ort genutzt, daher ging das Team außerordentlich vorsichtig vor, um keine Schäden zu hinterlassen. Die Forscher*innen fanden 22 weiße Kalzitkristalle und Fragmente von Straußeneierschalen, letztere dienten den Frühmenschen als Wasserbehälter. „Wir vermuten, dass es sich bei den geometrischen Kalzitkristallen um bewusst gesammelte Objekte handelt, die spirituelle und rituelle Zwecke erfüllten“, ergänzt die Archäologin.

Sandkorn als Miniuhr

Zur Datierung der Funde wurde die Lumineszenz-Methode herangezogen. Die Optisch Stimulierte Lumineszenz (OSL)-Datierung basiert auf der Messung von in Sandkörnern gespeichertem Licht und ist eines der wichtigsten Werkzeuge zur Altersbestimmung in den Erdwissenschaften und der Archäologie. „Bei dieser Datierungsmethode werden natürliche Lichtsignale genutzt, die sich im Laufe der Zeit in Quarz- und Feldspatkörnern anreichern. Dabei kann man sich jedes Korn wie eine winzige Uhr vorstellen, die wir unter kontrollierten Laborbedingungen ‚ablesen‘. Das Lichtsignal lässt uns auf das Alter der archäologischen Sedimentschichten schließen. Je mehr Licht, desto älter das Sediment“, beschreibt Michael Meyer die Vorgehensweise. Im OSL-Labor an der Universität Innsbruck werden bereits seit mehreren Jahren Untersuchungen dieser Art durchgeführt und brisante geologische und archäologische Forschungsfragen bearbeitet, die von Afrika, über Australien, das Tibetische Hochplateau und den Alpenraum reichen. Dabei geht das Innsbrucker Team besonders präzise vor und arbeitet mit jedem Sandkorn „einzeln“: „Wir verwenden Laserstimulation und statistische Modelle, um aus Tausenden einzeln gemessenen Quarzkörnern das Alter des Sediments zu bestimmen. Das ist sehr arbeits- und zeitintensiv, lohnt sich aber auf jeden Fall, da wir dadurch besonders robuste Altersdaten erhalten und viel präzisere Aussagen zu Mensch-Umweltdynamiken treffen können, als mit herkömmlichen Ansätzen möglich wäre“, so der Geologe. So auch in dieser Studie am Ga-Mohana-Hügel, wo die auf Einzelkorndatierung basierenden OSL-Alter mit unabhängig datierten Klimaarchiven perfekt zusammenpassten und so einen wesentlich detaillierteren Einblick in die menschlichen Evolutionsgeschichte und die gleichzeitig ablaufenden Klima und Umweltveränderungen ermöglichte.


Den Artikel finden Sie unter:

https://www.hhu.de/die-hhu/presse-und-marketing/aktuelles/pressemeldungen-der-hhu/news-detailansicht/wie-und-wo-lebten-die-ersten-zellen

Quelle: Heinrich-Heine-Universität Düsseldorf (03/2021)


Publikation:
Xavier, J.C., Gerhards, R.E., Wimmer, J.L.E. et al., The metabolic network of the last bacterial common ancestor, Commun Biol 4, 413 (2021).
DOI: 10.1038/s42003-021-01918-4
 
 
  Top
LogIn