Seminar Qualitätsmanagement
Informationsmanagement im Labor
Labormanagement
Forum LABORBAU 2021
  Home arrow News arrow Sensor und Entgifter: Kristalline Polymere für schnelle Detektion und effizienten Abbau von Ozon
Dienstag, 20. April 2021
 
 
analytik.de
analytik.de - news
Foto des Monats
Bild des Monats
Sensor und Entgifter: Kristalline Polymere für schnelle Detektion und effizienten Abbau von Ozon
ImageOzon ist ein problematischer Luftschadstoff, der ernsthafte gesundheitliche Probleme verursacht. Ein neu entwickeltes Material zeigt nicht nur die Anwesenheit von Ozon rasch und selektiv an, sondern kann das Gas gleichzeitig unschädlich machen. Wie chinesische Wissenschaftler in der Zeitschrift Angewandte Chemie berichten, funktionieren ihre porösen „2-in-1-Systeme“ auch bei hoher Luftfeuchtigkeit zuverlässig.


Ozon (O3) kann gesundheitlich Probleme wie Atembeschwerden, Lungenschäden und Asthma-Anfälle auslösen. Entsprechende Arbeitsschutzvorschriften begrenzen daher die Konzentration, die am Arbeitsplatz herrschen darf. Bisherige Methoden zur Detektion von Ozon, u.a. auf Basis von Halbleitern, haben meist Nachteile wie einen hohen Stromverbrauch, geringe Selektivität und Störungen durch Luftfeuchtigkeit. Techniken zur Reduzierung der Ozonkonzentration basieren bisher meist auf Aktivkohle, chemischer Absorption oder katalytischem Abbau.

Das Team um Zhenjie Zhang von der Universität Nankai (Tianjin, China) setzte sich jetzt zum Ziel, ein Material zu entwickeln, das Ozon erstmals sowohl rasch detektieren als auch effektiv entfernen kann. Dazu wählten sie einen Ansatz auf der Basis sogenannter kovalenter organischer Gerüste (Covalent organic frameworks, COFs). COFs sind zwei- oder dreidimensionale organische Feststoffe mit ausgedehnten porösen kristallinen Strukturen, deren Bausteine über starke kovalente Bindungen miteinander verbunden sind. COFs lassen sich über die Wahl ihrer Bausteine für viele Anwendungen maßschneidern.

Die Forscher:innen wählten sehr leicht herstellbare hochkristalline COFs aus aromatischen Ringsystemen. Die einzelnen Bausteine sind über spezielle Verbindungsstücke verknüpft: Imin-Gruppen (ein Stickstoffatom, das über eine Doppelbindung mit einem Kohlenstoffatom verbunden ist). Sie sind Zentrum des Geschehens.

Die Imin-COFs zeigen die Anwesenheit von Ozon durch eine sehr rasche Farbänderung von gelblich nach orange-rot an, die bereits mit dem bloßen Auge zu erkennen ist und mit einem Spektrometer registriert werden kann. Anders als viele andere Detektoren funktioniert das Imin-COF auch bei hoher Luftfeuchtigkeit und in einem breiten Temperaturbereich sehr zuverlässig, empfindlich und effizient. In Anwesenheit von Wasser binden bevorzugt Wassermoleküle an die Imin-Gruppen. In der Folge wird – so vermuten die Forscher:innen – ein Hydroxid-Ion (OH?) frei, das mit einem Molekül Ozon reagiert, während das positiv geladene Wasserstoffion an der Imin-Gruppe verbleibt und so für die Änderung der Farbe sorgt. Ist mehr Ozon als Wasser vorhanden (oder die Ozon-haltige Luft völlig trocken), bindet das überschüssige Ozon an die Imin-Gruppen und spaltet sie unter Abbau von zwei Molekülen Ozon. Auch dabei kommt es zu einer Farbänderung und die kristalline Struktur zerfällt nach und nach. Das Imin-COF detektiert Ozon also nicht nur, sondern baut das Schadgas auch zuverlässig und effizient ab. Dabei ist es effektiver als viele der traditionellen Materialien.


Den Artikel finden Sie unter:

https://onlinelibrary.wiley.com/page/journal/15213757/homepage/press/202103press.html

Quelle: Gesellschaft Deutscher Chemiker e.V. (02/2021)


Publikation:
Angewandte Chemie, Zhenjie Zhang
https://doi.org/10.1002/ange.202015629

 
 
  Top
LogIn