Home
Dienstag, 19. November 2019
 
 
analytik.de
analytik.de - news
Foto des Monats
Bild des Monats
Wie man Biokatalysatoren unsterblich macht
ImageEffiziente Katalysatoren für die Umwandlung von Wasserstoff in Brennstoffzellen und andere Stoffe für die Energiewende basieren oft auf teuren und seltenen Metallen wie Platin. Der Einsatz günstigerer Metalle und biologischer Komponenten, die ebenso effizient funktionieren, brachte bislang eine verkürzte Lebensdauer der Katalysatoren mit sich, weil sie empfindlich gegen Sauerstoff sind. Einem Forschungsteam aus Bochum und Marseille ist es gelungen, einen solchen Katalysator mit einem extrem dünnen Schutzfilm aus molekularen Bausteinen auszustatten, der ihn vor Sauerstoff abschirmt und seine Lebensdauer damit praktisch unendlich macht. Dabei arbeitet der Katalysator trotzdem effizient.

Dicke Schichten taugen in der Praxis nicht

Die Teams arbeiten seit Längerem daran, effiziente Biokatalysatoren, die sauerstoffempfindliche Hydrogenasen enthalten, langlebiger zu machen. „Vor etwa fünf Jahren haben wir einen Selbstverteidigungsmechanismus entwickelt, der auf einem leitfähigen Polymerfilm basiert“, erklärt Nicolas Plumeré. Die Elektronen, die bei der Oxidation von Wasserstoff entstehen, werden durch den Film transportiert und reagieren mit Sauerstoff, der somit beseitigt wird, bevor er das Innere des Katalysators erreichen kann, wo sich sauerstoffempfindliche Enzyme befinden. „Für die Praxis waren die Katalysatoren aber nicht zu gebrauchen“, so der Forscher. „Die Polymerfilme waren mit über 100 Mikrometern so dick, dass sie die Effizienz behindert haben.“

In der aktuellen Arbeit zeigen die Forscher, dass die Hydrogenasen auch in einem viel dünneren Polymerfilm sicher vor Sauerstoff sind. „Überraschenderweise sind diese nur wenige Mikrometer dünnen Filme sogar robuster als die dickeren“, so Nicolas Plumeré. 50 Prozent des Katalysators trägt nun zur Katalyse bei – bei dickeren Schutzfilmen waren es nur 0,3 Prozent.

Definierte Schutzschicht aus winzigen Kugeln

Kern der neuen Entwicklung sind die Bausteine, aus denen der Schutzfilm aufgebaut ist. Die Forscher nutzen dafür winzige Kugeln mit nur fünf Nanometern Durchmesser, die alle identisch aufgebaut sind, sogenannte Dendrimere. So konnten sie die Dicke der entstehenden Schicht genau kontrollieren.

Die Dendrimere können Elektronen effizienter transportieren als die zuvor genutzten Polymere. „Diese erhöhte Leitfähigkeit führt wahrscheinlich dazu, dass Elektronen schneller durch den Film transportiert werden“, erläutert Plumeré. „Dadurch kann Sauerstoff vermutlich in größerer Entfernung vom Katalysator gestoppt werden.“

22.000 Jahre effiziente Katalyse

Die Forscher waren überrascht zu beobachten, dass die Dicke des Schutzfilms sich erheblich auf die Lebensdauer des Katalysators auswirkt: In einem drei Mikrometer dünnen Film überlebt ein Katalysator in Anwesenheit von Sauerstoff nur rund zehn Minuten. Wenn der Film sechs Mikrometer dick ist, verlängert sich die Lebensdauer unter denselben Bedingungen auf bis zu ein Jahr. „Weitere zwei Mikrometer Dicke zusätzlich verlängern das Leben des Katalysators theoretisch auf 22.000 Jahre“, stellen die Forscher erstaunt fest.

Nachbarschaftshilfe verlängert das Leben

Ebenso überrascht war das Team, dass der Schutzfilm nicht nur schädliche Sauerstoffmoleküle abhält, sondern sogar in der Lage ist, einen nicht mehr funktionstüchtigen Katalysator zu reaktivieren, indem sie ihm Elektronen zuführt, die von einem benachbarten aktiven Katalysator stammen. „In andern Worten: Katalysatoren in diesem Schutzfilm schützen nicht nur sich selbst, sondern auch sich gegenseitig“, fasst Plumeré zusammen. Diese Eigenschaft ermöglicht auch Katalysatoren in nur drei Mikrometer dünnen Schutzschichten ein unendliches Leben.
„Diese extreme Langlebigkeit bringt uns einen weiteren Schritt näher an den Einsatz solcher sauerstoffempfindlichen Biokatalysatoren in Brennstoffzellen“, so das Forschungsteam.


Den ganzen Artikel finden Sie unter:

https://news.rub.de/wissenschaft/2019-10-09-chemie-wie-man-biokatalysatoren-unsterblich-macht

Quelle: Universität Basel (10/2019)


Publikation:
Huaiguang Li, Darren Buesen, Sebastien Dementin, Christophe Léger, Vincent Fourmond, Nicolas Plumeré: Complete Protection of O2-Sensitive Catalysts in Thin Films, in: Journal of the American Chemical Society, 2019, DOI: 10.1021/jacs.9b06790

 
 
  Top
LogIn