Home
Dienstag, 22. Mai 2018
 
 
Wie Magnetfelder Zwillingsbildung in Kristallen beheben können
ImageFür die Untersuchung neuer Materialien, wie etwa Hochtemperatursupraleiter, ist es in vielen Fällen wichtig, Messungen entlang unterschiedlicher Richtungen im Kristallgitter vornehmen zu können. Dies setzt aber Kristalle ohne interne Verdrehungen, sogenannte Verzwilligungen, voraus. Die derzeit intensiv untersuchten Eisenpniktidsupraleiter zeigen Zwillingsdomänen, die bislang nur durch Anlegen eines hohen Druckes vermieden werden konnten. Das ist technisch sehr aufwendig und schränkt die Untersuchungsmöglichkeiten stark ein. Hier wurde wurde vor drei Jahren ein wichtiger Durchbruch erzielt: In mit Europium-Momenten präparierten Eisenpniktidsupraleitern wurden Zwillingsdomänen mit kleinen Magnetfeldern so verschoben, dass perfekte Entzwilligung erreicht wurde. Dass dieser überraschende und neuartige Effekt auf einer speziellen magnetischen Wechselwirkung zwischen den magnetischen Momenten von Europium und Eisen basiert, zeigen die Augsburger Physiker Prof. Dr. Philipp Gegenwart und Dr. Jannis Maiwald (Lehrstuhl für Experimentalphysik VI/EKM) und ihr Kollege Dr. Igor I. Mazin vom Naval Research Laboratory in Washington (USA) jetzt in einem Artikel in der Fachzeitschrift Physical Review X.

Die meisten Ausgangsverbindungen moderner Hochtemperatursupraleiter, der sogenannten Eisenpniktide, weisen einen Phasenübergang auf, bei dem sich die Kristallstruktur innerhalb der tetragonalen Ebene verzerrt. Diese Verzerrung führt zur Bildung von Zwillingsdomänen auf Mikrometer-Skala, durch die die Richtungsabhängigkeit wichtiger physikalischer Eigenschaften verschleiert wird. Vor drei Jahren bereits haben Physiker der Universitäten Augsburg, Göttingen, Stuttgart und San Diego einen bemerkenswerten Effekt in der Verbindung EuFe?As? entdeckt: Durch Anlegen kleiner Magnetfelder kann man Kristallgitterdomänenwände bei tiefen Temperaturen verschieben und so einen entzwillingten Zustand erreichen. In wachsenden Magnetfeldern kann sogar mehrfach zwischen verschiedenen Kristallausrichtungen hin- und hergeschaltet werden.

Dieser Effekt ermöglicht es, die Richtungsabhängigkeit der Eigenschaften, die als Schlüssel zum Verständnis der Hochtemperatursupraleitung gilt, besser zu untersuchen. Es bedarf hierzu allerdings einer stichhaltigen Erklärung, wodurch dieser Effekt bewirkt wird. In der Fachzeitschrift Physical Review X liefern Maiwald, Mazin und Gegenwart eine solche Erklärung nun in Form einer umfassenden quantitativen Beschreibung dieser sehr ungewöhnlichen Kopplung zwischen Kristallgitter und angelegtem Magnetfeld.

Die untersuchte Verbindung EuFe?As? besitzt zwei Sorten magnetischer Momente, die einerseits von stark lokalisierten 4f-Orbitalen der Europium Atome und andererseits von vorwiegend delokalisierten 3d-Orbitalen der Eisen Atome stammen. Da Eisenpniktide ohne Europium-Momente kein vergleichbares Verhalten zeigen, liegt es auf der Hand, dass die Europium-Momente eine wichtige Rolle bei der Entzwilligung spielen. Deren Kopplung an das Kristallgitter ist allerdings viel zu schwach, um die Beobachtungen zu erklären.

Der entscheidende Punkt bei der theoretischen Beschreibung war daher die Modellierung der Wechselwirkung zwischen den Europium- und Eisen-Momenten. Aufgrund der symmetrischen Anordnung der Momente in EuFe?As? scheidet die normale, sogenannte lineare Heisenberg-Kopplung aus. "Erst durch die Einführung einer kleinen bi-quadratischen Kopplung, welche die Parallelstellung von Europium- und Eisenmomenten begünstigt, ist es uns gelungen, die experimentellen Beobachtungen zu verstehen und quantitativ exakt zu beschreiben", berichtet Gegenwart.

Die von seinen beiden Kollegen und ihm in Physical Review X publizierte Theorie sagt – über die Beschreibung der bisherigen experimentellen Beobachtungen hinaus – für sehr hohe Magnetfelder weitere schlagartige Änderungen der Kristallausrichtung in der Verbindung EuFe?As? voraus. Erste Anzeichen hierfür habe man bereits beobachten können. "Generell", so Gegenwart, "ermöglicht die magnetfeldinduzierte Entzwilligung eine Reihe neuer Untersuchungsmethoden zum Studium der richtungsabhängigen Eigenschaften von Hochtemperatur-Supraleitern. Damit ergeben sich neue Möglichkeiten, ein verbessertes Verständnis dieser faszinierenden Materialien zu erlangen."


Den Artikel finden Sie unter:

http://www.presse.uni-augsburg.de/de/unipressedienst/2018/jan-maerz/2018_013/

Quelle: Universität Augsburg (01/2018)


Publikation:
Jannis Maiwald, I.I. Mazin, and Philipp Gegenwart, Microscopic Theory of Magnetic Detwinning in Iron-Based Superconductors with Large-Spin Rare Earths, Physical Review X, 8, 011011 (2018), http://doi.org/10.1103/PhysRevX.8.011011

 
 
  Top
LogIn